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Abstract 

Background:  To investigate the influence of artificial intelligence (AI) based on deep learning on the diagnostic 
performance and consistency of inexperienced cardiovascular radiologists.

Methods:  We enrolled 196 patents who had undergone both coronary computed tomography angiography (CCTA) 
and invasive coronary angiography (ICA) within 6 months. Four readers with less cardiovascular experience (Reader 1–
Reader 4) and two cardiovascular radiologists (level II, Reader 5 and Reader 6) evaluated all images for ≥ 50% coronary 
artery stenosis, with ICA as the gold standard. Reader 3 and Reader 4 interpreted with AI system assistance, and the 
other four readers interpreted without the AI system. The sensitivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV) and accuracy (area under the receiver operating characteristic curve (AUC)) of the six read-
ers were calculated at the patient and vessel levels. Additionally, we evaluated the interobserver consistency between 
Reader 1 and Reader 2, Reader 3 and Reader 4, and Reader 5 and Reader 6.

Results:  The AI system had 94% and 78% sensitivity at the patient and vessel levels, respectively, which were higher 
than that of Reader 5 and Reader 6. AI-assisted Reader 3 and Reader 4 had higher sensitivity (range + 7.2–+ 16.6% 
and + 5.9–+ 16.1%, respectively) and NPVs (range + 3.7–+ 13.4% and + 2.7–+ 4.2%, respectively) than Reader 1 and 
Reader 2 without AI. Good interobserver consistency was found between Reader 3 and Reader 4 in interpreting ≥ 50% 
stenosis (Kappa value = 0.75 and 0.80 at the patient and vessel levels, respectively). Only Reader 1 and Reader 2 
showed poor interobserver consistency (Kappa value = 0.25 and 0.37). Reader 5 and Reader 6 showed moderate 
agreement (Kappa value = 0.55 and 0.61).

Conclusions:  Our study showed that using AI could effectively increase the sensitivity of inexperienced readers and 
significantly improve the consistency of coronary stenosis diagnosis via CCTA.

Trial registration Clinical trial registration number: ChiCTR1900021867. Name of registry: Diagnostic performance of 
artificial intelligence-assisted coronary computed tomography angiography for the assessment of coronary athero-
sclerotic stenosis.
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Background
Many studies have demonstrated the high accuracy of 
coronary computed tomography angiography (CCTA) 
compared to invasive coronary angiography (ICA) in 
detecting coronary stenosis, particularly due to the high 
sensitivity and negative predictive value (NPV) of CCTA 
in coronary artery disease diagnosis. However, in previ-
ous studies, most of the results were interpreted by car-
diovascular experts [1–6]. Reader diagnostic experience 
significantly impacts the identification of the degree 
of coronary artery stenosis, as well as the interobserver 
interpretation variability, with less experienced readers 
tending to miss lesions, resulting in relatively low diag-
nostic sensitivity [7, 8]. Less experienced readers also 
tend to overestimate lesions due to the calcium-bloom-
ing effects of hard plaques. Therefore, for radiologists 
with less cardiovascular experience, the development of 
an automated system to aid in diagnosis is attractive and 
promising.

Automated artificial intelligence (AI) algorithms have 
been applied in the diagnosis of a wide range of disease 
states [9–14]; for example, the use of AI in the detec-
tion and diagnosis of breast cancer and colon polyps has 
improved reader performance, especially for inexperi-
enced or novice readers [10, 15, 16]. However, AI algo-
rithms are still rarely applied in coronary artery disease 
[13, 17, 18]. Our study sought to assess the influence of 
AI based on deep learning on the diagnostic perfor-
mance and consistency of inexperienced cardiovascular 
radiologists.

Methods
Study population
This study was a single-centre retrospective study 
approved by the Ethics Committee of Beijing Friendship 
Hospital, Capital Medical University (Central Office for 
Research Ethics Committee Reference 2020-P2-010-
02). Between January 2017 and October 2018, 252 con-
secutive patients (aged over 18 years) with suspected or 
known coronary heart disease (CHD) underwent both 
CCTA and ICA examinations within six months. Patients 
with iodine contrast agent allergy, atrial fibrillation, renal 
failure or pregnancy were excluded from this study. Of 
the initially included patients, seventeen had incomplete 
CCTA or ICA data, 6 had abnormal coronary origins or 
had undergone bypass surgery, 7 had poor image qual-
ity, and 26 had three vessel lesions (left anterior descend-
ing (LAD) artery, left circumflex (LCx) artery and right 
coronary artery (RCA)) that could not be simultaneously 

evaluated. These patients were excluded due to severely 
extensive calcification (the standard of severe calcifica-
tion was cross-sectional arc calcium > 180°) [19], stents 
and motion artefacts. Finally, 196 patients were enrolled 
(Fig.  1). ICA is the gold standard of diagnosis and was 
jointly interpreted for ≥ 50% stenosis by an expert panel 
of three cardiovascular experts with at least 10  years of 
experience in both ICA and CCTA.

CCTA image acquisition
A 256-section CT (GE Healthcare, Waukesha, Wiscon-
sin, US), a 64-section CT (GE Healthcare, Waukesha, 
Wisconsin, US) and a 128-row multidetector CT (Philips 
Medical Systems, Eindhoven, The Netherlands) were 
used to capture patient image data. Prospective electro-
cardiographic gating was employed. IoproMide (Iopro-
Mide, Ultravist 370; Bayer Healthcare LLC, Whippany, 
New Jersey) or Iohexol (Omnipaque 350, GE Healthcare, 
Princeton, NJ) was injected at 5–6 ml/s into the antecu-
bital vein. All scanners had a layer thickness and spacing 
of 0.625 mm.

CCTA analysis
All 196 CCTA patient datasets were reconstructed at 
a workstation (GE Advantage Workstation 4.6 or 4.7, 
GE Healthcare, Waukesha, Wisconsin) to transform the 
data into multiplanar reformation (MPR) and curved 
MPR (cMPR) images based on the original axial image. 
These images were then transferred to a picture archiv-
ing and communication system (PACS). Patients were 
defined as positive for significant coronary artery disease 
when ≥ 50% stenosis was observed. Six readers inter-
preted stenosis via CCTA for all patients. The readers 
had different levels of experience. Four readers (Readers 
1 to 4) were general radiologists with less experience in 
cardiovascular imaging who had interpreted less than 
50 cases of coronary artery stenosis via CCTA and had 
not been mentored [20]. Readers 5 and 6 were cardiovas-
cular radiologists with at least 5  years of CCTA experi-
ence, corresponding to level II competency (independent 
practitioners, IP) [21]. Inexperienced Readers 1 and 2 and 
experienced Readers 5 and 6 evaluated all patient data 
on the same PACS without the AI system. Inexperienced 
Readers 3 and 4 evaluated the same patient data on the 
AI workstation and received AI assistance in coronary 
stenosis diagnosis. This study did not require the same 
readers to interpret the 196 CCTA datasets both with 
and without AI because CCTA interpretation experi-
ence is related to the number of cases evaluated [7, 20, 
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22]. Interpreting 196 CCTA datasets would have a sig-
nificant impact on a reader’s experience; therefore, we 
selected four readers with similar experience levels rather 
than requiring the same readers to interpret the data 
twice. Thus, reader recall bias was effectively avoided. 
The AI system could independently perform automatic 
reconstruction and intelligently diagnose coronary artery 
stenosis. All readers analysed the four primary coronary 
arteries, the left main (LM) artery, LAD, LCx and RCA, 
and recorded the presence of both vessels and ≥ 50% 

stenosis. Vessels with severely extensive calcified plaque, 
stents or a diameter of ≤ 1.5 mm were excluded from this 
study.

AI system
Data acquisition
The AI system used was “CoronaryDoc clinical decision 
Support Platform V1.0” from Shukun (Beijing) Tech-
nology Co., Ltd. [23]. All CCTA data were transferred 
from a GE Advantage Workstation 4.6 or 4.7 to the AI 

Fig. 1  Flow diagram of the patient selection process. CCTA​ coronary computed tomography angiography, ICA invasive coronary angiography
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workstation, and then the AI system extracted the cen-
terline [24] and automatically reconstructed MPR and 
cMPR images based on the original axial image.

Coronary artery segmentation and naming
Coronary arteries were divided into 18 segments accord-
ing to the Society of Cardiovascular Computed Tomog-
raphy (SCCT) criteria [25]. An improved 3-dimensional 
(3D) U-Net coronary tree segmentation architecture was 
used. The AI system used an automatic identification 
algorithm to achieve coronary artery segmentation and 
naming [24].

Automatic reconstruction and intelligent diagnosis 
of coronary artery stenosis
The system was based on coronary tree segmentation, 
MPR, straightened rendering (SR), cMPR, maximum 
intensity projection (MIP) and volume rendering (VR) 
images, and it automatically reconstructed the data. Ste-
nosis along the long axis of a vessel was calculated based 
on the radius of the lumen at the plaque location and the 
upstream and downstream blood vessel radii (details are 
provided in the Additional file 1: Appendices).

Statistical analysis
All data were analysed using SPSS (version 26.0, IBM, 
Washington, USA) and MedCalc (version 19.0.4, bvba, 
Ostend, Belgium) software. Assuming a 60% prevalence 
of coronary artery disease at the patient level at our sin-
gle centre, the area under the receiver operating char-
acteristic curve (AUC) of patients without AI and with 
AI was 68% and 77%, respectively. The sample size was 
estimated to be 143 patients, with 86 disease cases and 
57 disease-free cases. Categorical variables are shown as 
percentages, and continuous variables are shown as the 
means and ranges. We used sensitivity, specificity, the 
positive predictive value (PPV), the NPV, and the AUC to 
describe diagnostic performance and accuracy. ICA was 
used as the gold standard to assess the results of ≥ 50% 
coronary artery stenosis detection by the 6 readers at 
the patient and vessel levels. In patient-level analysis, a 
patient with ≥ 50% stenosis in any vessel or segment was 
considered a positive case. In vessel-level analysis, any 
vessel with stenosis ≥ 50% was considered a positive case. 
AUC comparisons among the 6 readers were performed 
by the method of DeLong et  al. [26]. We used Cohen’s 
kappa coefficient to evaluate the interobserver con-
sistency in detecting ≥ 50% stenosis lesions among the 
inexperienced readers without AI assistance, the inex-
perienced readers with AI assistance and the two car-
diovascular radiologists. Vessels not evaluated by the six 
readers or the AI system were not statistically analysed 

in this study. A P value < 0.05 was considered statistically 
significant.

Results
Patients
The mean age of the patients was 63.9 ± 8.8  years, and 
the mean heart rate was 65.2 ± 12.5 beats/min. The clini-
cal information of the patients is shown in Table 1. At the 
vessel level, seventeen vessels contained stents, ten had 
severely extensive calcified plaque, one had a vessel diam-
eter ≤ 1.5  mm (RCA), and one had no LM. Finally, 755 
vessels were included in the analysis. ICA showed 228 
vessel stenoses ≥ 50% in 139 patients (71%), of which six 
were in the LM, 107 were in the LAD, 54 were in the LCx, 
and 61 were in the RCA (Fig. 1 and Fig. 2).

Patient‑level analysis of the six readers
Table 2 shows the detailed reader performance and accu-
racy in identifying ≥ 50% stenosis at the patient level. At 
the patient level, Readers 3 (85.6%) and 4 (87.1%), who 
were aided by the AI system, had higher sensitivity than 
Readers 1 (70.5%) and 2 (78.4%), who did not use the AI 
system (range + 7.2–+ 16.6%). A statistically significant 
difference in sensitivity was found between Reader 1 
and inexperienced readers with AI assistance (P = 0.001 
and P < 0.001). Reader 2 demonstrated no difference 
in sensitivity (P = 0.164 and P = 0.81), a higher NPV 
(range + 3.7–+ 13.4%), lower specificity (range − 17.5 to 
− 8.8%), and no significant difference in PPV. Overall, the 
AUCs of the four inexperienced readers did not signifi-
cantly differ (all P values > 0.05). The AUCs, as a measure 
of diagnostic accuracy, ranged from 0.68 to 0.71 for the 
inexperienced readers and were lower than those of the 
experienced readers (that of Reader 5 was 0.77, and that 

Table 1  Clinical features of the 196 patients

No. = number. Age and heart rate are shown as the mean ± standard deviation 
or the median and range. CHD = coronary heart disease. Hypertension data 
were available for 195 patients (123 men and 72 women), hyperlipidaemia data 
were available for 178 patients (113 men and 65 women), and diabetes data 
were available for 192 patients (120 men and 72 women)

Parameter Men Women

Total no. of patients 124 (63.3%) 72 (36.7%)

Age (y) 61.72 ± 8.50 67.63 ± 8.22

Median body mass index (kg/m2) 25.58 ± 3.13 25.93 ± 4.23

No. of patients who smoked 93 (75.0%) 7 (9.7%)

No. of patients who drank 59 (47.6%) 1 (1.4%)

No. of patients with hypertension 89 (72.4%) 54 (75.0%)

No. of patients with hyperlipidaemia 67 (59.3%) 33 (50.8%)

No. of patients with diabetes 52 (43.3%) 27 (37.5%)

No. of patients with known CHD 11 (8.9%) 10 (13.9%)

Heart rate of patients 63.90 ± 11.59 65.18 ± 12.52
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Fig. 2  Single-centre retrospective case of a noncalcified plaque lesion in the proximal LAD that caused severe stenosis (white arrow). a CPR image 
reconstructed manually, b ICA image of the left coronary artery, c CPR, VRT and straightened images automatically reconstructed by the AI system. 
ICA invasive coronary angiography, LAD left anterior descending, LCx left circumflex

Table 2  Diagnostic performance of the six readers and the AI system alone for the same set of patients

Data in parentheses are 95% confidence intervals

AI artificial intelligence, PPV positive predictive value, NPV negative predictive value

Reader Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

AI 93.5 (88.1, 97.0) 57.9 (44.1, 70.9) 84.4 78.6 80.0 (73.1, 84.9)

Reader 1 70.5 (62.2, 77.9) 54.4 (40.7, 67.6) 79.0 43.1 69.1 (62.1, 75.4)

Reader 2 78.4 (70.6, 84.9) 57. 9 (44.1, 70.9) 82.0 52.4 69.0 (62.0, 75.4)

Reader 3 85.6 (78.7, 91.0) 45.6 (32.4, 59.3) 79.3 56.5 71.2 (64.3, 77.5)

Reader 4 87.1 (80.3, 92.1) 40.4 (27.6, 54.2) 78.1 56.1 67.8 (60.8, 74.3)

Reader 5 65.5 (56.9, 73.3) 68.4 (54.8, 80.1) 83.5 44.8 77.3 (70.8, 83.0)

Reader 6 77.7 (69.9, 84.3) 64.9 (51.1, 77.1) 84.4 54.4 75.6 (69.0, 81.5)
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of Reader 6 was 0.76). Of the six readers’ AUCs, only 
those of Reader 4 and Reader 5 were significantly differ-
ent (P = 0.02), while the other readers showed no signifi-
cant differences (Fig. 3).

Vessel‑level analysis of the six readers
Table 3 shows the detailed reader performance and accu-
racy in identifying ≥ 50% stenosis at the vessel level. At 
the vessel level, Readers 3 (67.1%) and 4 (69.3%), who 
were aided by the AI system, had a higher sensitivity 
than Readers 1 (53.2%) and 2 (61.2%), who did not have 
AI assistance (range + 5.9–+ 16.1%). A statistically sig-
nificant difference in sensitivity was found between 
Reader 1 and the inexperienced readers with AI assis-
tance (P = 0.001 and P < 0.001), while Reader 2 dem-
onstrated no difference (P = 0.208 and P = 0.76) and 
a slightly higher NPV (range + 2.7–+ 4.2%). Reader 1 
(89.2%) had higher specificity than Readers 3 (83.2%) 
and 4 (81.3%), while Reader 2 (78.3%) had slightly lower 
specificity than Readers 3 and 4. Overall, the AUCs of 
the four inexperienced readers did not significantly differ 

(all P value > 0.05). The AUC, as a measure of diagnostic 
accuracy, ranged from 0.80 to 0.83 for the inexperienced 
readers and was lower for the experienced readers (those 
of Readers 5 and 6 were both 0.85). Of the six readers’ 
AUCs, only the AUC of Reader 2 was significantly differ-
ent from those of the experienced readers (P = 0.009 and 
P = 0.002), while Readers 4 and 6 showed slightly statis-
tically significant differences (P = 0.045). The AUCs of 
other readers did not significantly differ (Fig. 4).

Diagnostic performance of the AI system
The CCTA data of all 196 patients were successfully 
uploaded and automatically reconstructed. To iden-
tify ≥ 50% stenosis, the AI system could output the 
degree of stenosis in each present vessel and segment. At 
the patient level, the AI system alone had 93.5% sensitiv-
ity, 57.9% specificity, 84.4% PPV, 78.6% NPV and 80.0% 
accuracy (Table  2). At the vessel level, the AI system 

Fig. 3  AUC comparison of the six readers at the patient level

Table 3  Diagnostic performance of the six readers and the AI system alone for the same set of vessels

Data in parentheses are 95% confidence intervals

AI artificial intelligence, PPV positive predictive value, NPV negative predictive value

Reader Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

AI 78.1 (72.1, 83.3) 82.5 (79.0, 85.7) 65.9 89.7 84.5 (81.7, 87.0)

Reader 1 53.2 (46.4, 59.9) 89.2 (86.2, 91.7) 67.8 81.7 82.5 (79.6, 85.2)

Reader 2 61.2 (54.6, 67.6) 78.3 (74.6, 81.8) 54.9 82.7 79.5 (76.4, 82.3)

Reader 3 67.1 (60.6, 73.2) 83.2 (79.8, 86.3) 63.5 85.4 83.3 (80.4, 85.9)

Reader 4 69.3 (62.9, 75.2) 81.3 (77.7, 84.5) 61.7 85.9 81.3 (78.4, 84.1)

Reader 5 50.9 (44.2, 57.6) 93.1 (90.5, 95.1) 76.2 81.3 84.7 (81.9, 87.2)

Reader 6 64.2 (57.5, 70.4) 89.8 (86.9, 92.3) 73.2 85.2 85.0 (82.2, 87.5)

Fig. 4  AUC comparison of the six readers at the vessel level
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alone had 78.1% sensitivity, 82.5% specificity, 65.9% PPV, 
89.7% NPV and 84.5% accuracy (Table 3). Compared to 
ICA, AI indicated 9/139 (6.5%) false-positive and 24/57 
(42.1%) false-negative patients at the patient level and 
50/228 (21.9%) false-positive and 92/526 (17.5%) false-
negative vessels at the vessel level. The AI system missed 
one lesion (LCx) at the vessel level, while no lesions were 
missed at the patient level. Overall, the diagnostic accu-
racy of the AI system was slightly higher than that of the 
experienced readers (IP) at the patient level and close to 
that of the experienced readers at the vessel level.

Diagnostic consistency of the six readers
Good interobserver consistency was found between the 
two inexperienced readers aided by the AI system (Read-
ers 3 and 4) in interpreting lesions with more than 50% 
stenosis, with Kappa values of 0.75 (95% CI 0.64, 0.86) 
and 0.80 (95% CI 0.75, 0.84) at the patient and vessel lev-
els, respectively. However, the two inexperienced readers 
without AI assistance (Readers 1 and 2) had very poor 
interobserver consistency, with kappa values of 0.25 (95% 
CI 0.11, 0.38) and 0.37 (95% CI 0.30, 0.44) at the patient 
and vessel levels, respectively. In interpreting lesions with 
more than 50% stenosis, the experienced cardiovascu-
lar radiologists without AI assistance (Readers 5 and 6) 
showed moderate agreement, with kappa values of 0.55 
(95% CI 0.43, 0.66) and 0.61 (95% CI 0.54, 0.68) at the 
patient and vessel levels, respectively.

Discussion
Automated computerized detection and diagnostic sys-
tems have been introduced as auxiliary tools for radiolo-
gists in diverse diagnostic processes [9–14]. Coronary 
artery disease is one of the leading causes of life-threat-
ening health problems in developing countries [27, 28], 
but AI is still rarely used for this disease diagnosis [18]. 
At present, several studies have compared the diagnostic 
performance of AI with that of ICA or experts [17, 29]. 
The preliminary conclusion is that AI has great value and 
promise for application and may be used as a diagnostic 
aid by inexperienced radiologists. The influence of AI on 
the diagnostic performance and consistency of inexpe-
rienced readers has relatively rarely been studied for the 
diagnosis of coronary artery disease with ≥ 50% stenosis.

Our results indicated that the use of AI as a diagnostic 
aid might have a positive effect on inexperienced radiolo-
gists in diagnosing coronary stenosis on CCTA. The most 
obvious effect was that inexperienced readers with AI 
assistance performed better than those without AI assis-
tance at both the patient and vessel levels, and this differ-
ence was statistically significant. Additionally, the NPV 
of the former was also higher. Moreover, the consistency 
of inexperienced readers was significantly higher. When 

inexperienced readers used the AI system as an auxil-
iary reader, their sensitivity reached or surpassed that of 
more experienced readers (IP). In our analysis, based on 
the mildly improved diagnostic accuracy observed when 
using the AI system, the sensitivity and NPV were signifi-
cantly higher, without a significant decrease in specificity 
or PPV. These findings were similar to those of previous 
studies evaluating the effect of AI in diagnosing coronary 
artery disease and other diseases [10, 13, 16]. Moreover, 
the AI training of less experienced radiologists was also 
dominated by an increase in sensitivity, which is in line 
with the results of previous studies [7, 30]. Increased sen-
sitivity of less experienced readers could improve radi-
ologists’ abilities to detect obstructed coronary arteries 
and reduce missed disease diagnoses. The reason for the 
increased sensitivity of inexperienced readers may be 
their tendency to rely the AI system when unsure of the 
presence of obstructive disease. Consequently, the AI sys-
tem, with high sensitivity (93.5% at the patient level) and 
low specificity (57.9% at the patient level), also reflected 
the performance of inexperienced readers. Importantly, 
AI assistance clearly increased the consistency of the 
inexperienced readers (the kappa value increased from 
0.25 to 0.75 at the patient level).

Experienced readers (IP) had higher diagnostic accu-
racy than inexperienced readers, suggesting that the 
reader’s experience influenced their diagnostic per-
formance and that specific cardiovascular training is 
important. In clinical work, specialty training, although 
important, is time-consuming and demanding, especially 
for inexperienced practitioners. With the increasing use 
of deep learning algorithms, at present, AI has achieved 
higher sensitivity but lower specificity at the patient level. 
Therefore, the AI system had similar limitations to those 
of human readers in that it could not accurately measure 
the severity of lesions and overestimated them compared 
to ICA or quantitative coronary angiography (QCA) [31]. 
The algorithm is still undergoing optimization. Consider-
ing these factors, AI assistance still holds great potential 
for improving disease detection and excluding stenosis at 
the patient level for less experienced readers or novices, 
and it may provide an appropriate training alternative.

Our study had several limitations. First, we used 
ICA as the reference standard, and enrolled patients 
who underwent ICA were likely to have severe steno-
sis, which might have led to a high disease prevalence 
(71% at the patient level); thus, this study is subject to 
the same selection bias shown in previous comparative 
studies [13]. Second, we chose 50% coronary stenosis as 
the cut-off value based on previous research, but this 
analysis was different from actual clinical practice [13, 
32]. Third, due to the relatively large number of patients 
enrolled and considering that case interpretation may 
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have impacted inexperienced readers, diagnostic per-
formance was not compared among the same readers 
with and without AI assistance. Instead, we selected 
different readers with similar experience levels, which 
might have impacted the obtained results; however, 
the overall trend was consistent with those of previous 
studies using the same readers for both tasks. There-
fore, the study design effectively avoided methodologi-
cal reader recall bias.

In conclusion, as a supplement, the AI system could 
effectively increase the diagnostic sensitivity of less 
experienced readers and significantly improve their 
consistency.
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